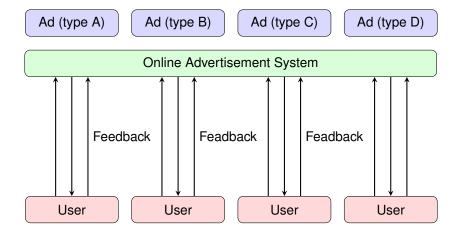
Linear Upper Confidence Bound Algorithm for Contextual Bandit Problem with Piled Rewards

Kuan-Hao Huang and Hsuan-Tien Lin

Department of Computer Science & Information Engineering National Taiwan University

April 20, 2016 (PAKDD)

Contextual Bandit Problem (example)



Contextual Bandit Problem (traditional)

Notation

- user: context $\mathbf{x} \in \mathbb{R}^d$
- ad: action $a \in \{1, 2, .., K\}$
- feedback: reward $r \in [0, 1]$

Contextual bandit problem (traditional setting)

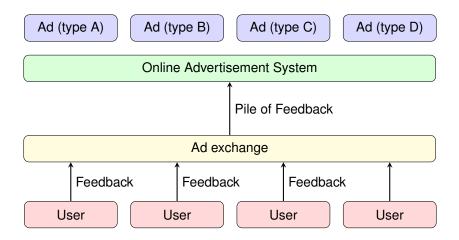
for round t = 1, 2, ..., T

- algorithm \mathcal{A} receives a context \mathbf{x}_t
- algorithm A selects an action a_t based on the context x_t
- algorithm \mathcal{A} receives the reward r_{t,a_t}

algorithm \mathcal{A} tries to maximize the cumulative rewards $\sum_{t=1}^{1} r_{t,a_t}$

Challenge for contextual bandit problem

partial feedback: exploitation vs. exploration



Contextual Bandit Problem (piled-reward)

Notation

- user: context $\mathbf{x} \in \mathbb{R}^d$
- ad: action $a \in \{1, 2, .., K\}$
- feedback: reward $r \in [0, 1]$

Contextual bandit problem (piled-reward setting)

```
for round t = 1, 2, ..., T
```

- for i = 1, 2, ..., n
 - algorithm \mathcal{A} receives a context \mathbf{x}_{t_i}
 - algorithm A selects an action a_{ti} based on the context x_t
- ► algorithm \mathcal{A} receives n rewards $r_{t_1,a_{t_1}}, r_{t_2,a_{t_2}}, ..., r_{t_n,a_{t_n}}$

algorithm \mathcal{A} tries to maximize the cumulative rewards $\sum_{t=1}^{T} \sum_{i=1}^{n} r_{t_i, a_{t_i}}$

Linear Upper Confidence Bound (LinUCB)

LinUCB [Li et al., 2010]

- state-of-the-art algorithm for the traditional setting (n = 1)
- For each round t and context \mathbf{x}_t , LinUCB gives every actions a a score
- selected action $a_t = \operatorname{argmax}_a(\operatorname{score}_{t,a}(\mathbf{x}_t))$

 $score_{t,a}(\mathbf{x}_t) = estimated reward + uncertainty$

= estimated reward + confidence bound

 $= \mathbf{w}_{t,a}^{\top} \mathbf{x} + \alpha \sqrt{\mathbf{x}_{t}^{\top} (\mathbf{I} + \mathbf{X}_{t-1,a}^{\top} \mathbf{X}_{t-1,a})^{-1} \mathbf{x}_{t}}$

- estimated reward for exploitation, is obtained by the regression from pairs (x_τ, r_{τ,a}) of action a
- uncertainty for exploration, estimates how confident for the estimated reward
- update the scoring function whenever receiving the reward

Applying LinUCB to Piled-reward setting

LinUCB under the piled-reward setting

for round t = 1, 2, ..., T

- ▶ for i = 1, 2, ..., n
 - LinUCB receives context x_{t_i}
 - LinUCB selects an action a_{t_i} with the same scoring function
- ► LinUCB receives n rewards $r_{t_1,a_{t_1}}, r_{t_2,a_{t_2}}, ..., r_{t_n,a_{t_n}}$
- LinUCB updates the scoring function with n rewards

Problem for LinUCB under the piled-reward setting

- no update for scoring function within the round
- LinUCB selects action with high uncertainty but low estimated reward risk for some contexts
- \blacktriangleright these contexts come again and again \rightarrow low reward
- need strategic exploration within the round

Strategic Exploration

Our solution

- ► use previous contexts x_{t1}, x_{t2}, ..., x_{ti-1} in this round to help for selecting action for x_{ti}
- give each previous context $\mathbf{x}_{t_{\tau}}$ a **pseudo reward** $p_{t_{\tau},a_{t_{\tau}}}$
- use the pseudo reward to pretend the true reward
- we design two pseudo rewards:
 - estimated reward: estimated reward
 - underestimated reward: estimated reward confidence bound

Score after the update with pseudo reward

pseudo reward	estimated reward	uncertainty
estimated reward	no change	become lower
underestimated reward	become lower	become lower

- achieve strategic exploration
- underestimated reward is more aggressive than estimated reward

Linear Upper Confidence Bound with Pseudo Reward

A novel algorithm

Linear Upper Confidence Bound with Pseudo Reward (LinUCBPR)

- LinUCBPR-ER: estimated reward as the pseudo reward
- LinUCBPR-UR: underestimated reward as the pseudo reward

LinUCBPR under the piled-reward setting

for round t = 1, 2, ..., T

- $\blacktriangleright \ \text{ for } i=1,2,...,n$
 - LinUCBPR receives context x_{t_i}
 - LinUCBPR selects an action a_{t_i} with the scoring function
 - LinUCBPR updates the scoring function with the pseudo rewards $p_{t_i,a_{t_i}}$
- ► LinUCBPR receives n true rewards $r_{t_1,a_{t_1}}, r_{t_2,a_{t_2}}, ..., r_{t_n,a_{t_n}}$
- LinUCBPR discards the change caused by the pseudo rewards
- ► LinUCBPR updates the scoring function with *n* true rewards

Theoretical Analysis

Regret for algorithm \mathcal{A}

$$\mathsf{Regret}(\mathcal{A}) = \sum_{t=1}^{T} \sum_{i=1}^{n} r_{t_i, a_{t_i}^*} - \sum_{t=1}^{T} \sum_{i=1}^{n} r_{t_i, a_{t_i}}$$

Theorem

For some $\alpha = O(\sqrt{\ln(nTK/\delta)})$, with probability $1 - \delta$, the regret bounds of LinUCB and LinUCBPR-ER under the piled-reward setting are both

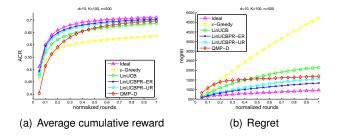
 $\mathcal{O}(\sqrt{dn^2 T K \ln^3(nT K/\delta)})$

- when the number of contexts (nT) is constant, the regret bound $\propto \sqrt{n}$
- LinUCB and LinUCBPR-ER enjoy the same regret bound

Artificial Datasets

Artificial data

• $\mathbf{u}_1, \mathbf{u}_1, ..., \mathbf{u}_K \in \mathbb{R}^d$ for K actions • $r_{t,a} = \mathbf{u}_a^\top \mathbf{x}_t + \epsilon_t$, where $\epsilon \in [-0.05, 0.05]$

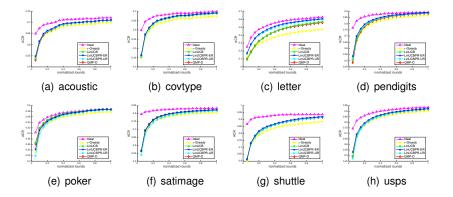


- LinUCBPR outperform others, especially in the early rounds
- LinUCBPR-ER is better than LinUCBPR-UR

K.-H. Huang and H.-T. Lin (NTU)

Simple Supervised-to-contextual-bandit Datasets

 take supervised-to-contextual-bandit transform [Dudík et al., 2011] on 8 multiclass datasets

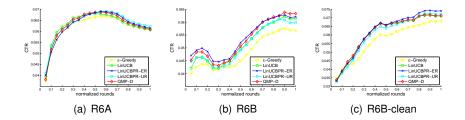


LinUCBPR-ER reaches the best again

Real-world Datasets

News recommendation dataset by Yahoo!

- appearing in ICML 2012 workshop competition
- the only public dataset for contextual bandit problem
- dynamic action set



LinUCBPR-ER is stable and promising

Conclusion

- formalize the piled-reward setting for contextual bandit problem
- demonstrate how LinUCB can be applied to the piled-reward setting, and prove its regret bound
- propose LinUCBPR, and prove the regret bound of LinUCBPR-ER
- validate the promising performance of LinUCBPR-ER

Thank you! Any question?