# A Novel Uncertainty Sampling Algorithm for Cost-Sensitive Multiclass Active Learning

Kuan-Hao Huang<sup>1</sup> and Hsuan-Tien Lin<sup>1,2</sup>

<sup>1</sup>Department of Computer Science & Information Engineering National Taiwan University

<sup>2</sup>Appier Inc.



ICDM, December 15, 2016

# **Active Learning**

Active learning for multiclass classification

- ► labeled pool  $\mathcal{D}_l = \{\text{feature} : \mathbf{x}^{(n)}, \text{label} : y^{(n)}\}_{n=1}^{N_l}$ .
- unlabeled pool  $\mathcal{D}_u = \{\text{feature} : \mathbf{x}^{(n)}\}_{n=1}^{N_u}$
- for round t = 1, 2, ..., T
  - ▶ select instance  $\mathbf{x}_s \in \mathcal{D}_u$  by a **querying strategy** to get label  $y_s$
  - move  $(\mathbf{x}_s, y_s)$  from unlabeled pool  $\mathcal{D}_u$  to labeled pool  $\mathcal{D}_l$
  - learn a classifier  $f^{(t)}$  from the current labeled pool  $\mathcal{D}_l$
- improve the performance of  $f^{(t)}$  with respect to #queries

## Querying strategies

- uncertainty sampling [Lewis et al., 2010; Tong et al. 2001; Jing et al., 2004]
- representative sampling [Settles et al., 2008; Huang et al., 2014; Dasgupta et al., 2008]
- error reduction [Roy et al., 2001]

# **Evaluation Criteria**

#### Regular (Error rate)

|         | healthy | cold | Zika |
|---------|---------|------|------|
| healthy | 0       | 1    | 1    |
| cold    | 1       | 0    | 1    |
| Zika    | 1       | 1    | 0    |

- same costs of errors
- most common criterion

### Cost matrix

|         | healthy | cold | Zika |
|---------|---------|------|------|
| healthy | 0       | 10   | 50   |
| cold    | 200     | 0    | 100  |
| Zika    | 1000    | 800  | 0    |
|         |         |      |      |

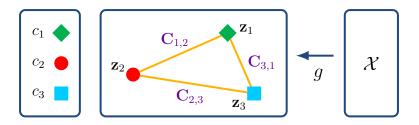
- different costs of errors
- cost matrix  $C_{i,j}$ : predict  $c_i$  as  $c_j$

### Cost-sensitive active learning algorithms

- ► cost-sensitive multiclass classification takes cost matrix C into account
- our goal: active learning for cost-sensitive multiclass classification

|                           | querying strategy                              | classifier f                                  |
|---------------------------|------------------------------------------------|-----------------------------------------------|
| regular algorithms        | by $f$ , $\mathcal{D}_l$ , and $\mathcal{D}_u$ | learned from $\mathcal{D}_l$                  |
| cost-sensitive algorithms | by $f, \mathcal{D}_l, \mathcal{D}_u$ , and C   | learned from $\mathcal{D}_l$ and $\mathbf{C}$ |

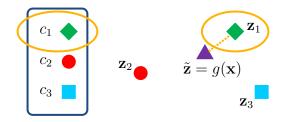
# Cost Embedding (Training)



#### Training stage

- ► for classes  $c_1, c_2, ..., c_K$ , find K hidden points  $\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_K$
- ► higher (lower) cost  $C_{i,j} \Leftrightarrow$  larger (smaller) distance  $d(\mathbf{z}_i, \mathbf{z}_j)$
- preserve the order of the costs in distance
- by non-metric multidimensional scaling
- learn a **regressor** g from  $\{\mathbf{x}^{(n)}, \mathbf{z}^{(n)}\}_{n=1}^{N_l}$

# Cost Embedding (Predicting)

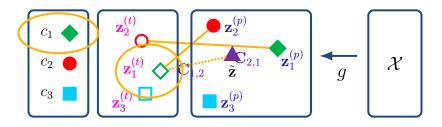


#### Predicting stage

- ► for a testing instance  $\mathbf{x}$ , get the **predicted hidden point**  $\tilde{\mathbf{z}} = g(\mathbf{x})$
- ▶ find the nearest hidden point of ž from z<sub>1</sub>, z<sub>2</sub>, ..., z<sub>K</sub>
- take the corresponding class as the cost-sensitive prediction

#### asymmetric cost ( $C_{i,j} \neq C_{j,i}$ ) vs. symmetric distance?

# **Mirroring Trick**

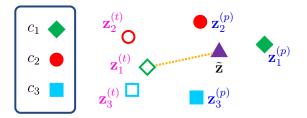


#### Two roles of class

- two roles of class  $c_i$ : ground truth role  $\mathbf{z}_i^{(t)}$  and prediction role  $\mathbf{z}_i^{(p)}$
- $\mathbf{C}_{i,j} \Rightarrow c_i$  is ground truth and  $c_j$  is prediction  $\Rightarrow$  for  $\mathbf{z}_i^{(t)}$  and  $\mathbf{z}_j^{(p)}$
- $\mathbf{C}_{j,i} \Rightarrow c_i$  is prediction and  $c_j$  is ground truth  $\Rightarrow$  for  $\mathbf{z}_i^{(p)}$  and  $\mathbf{z}_j^{(t)}$
- ► learn a **regressor** g from  $\mathbf{z}_1^{(p)}, \mathbf{z}_2^{(p)}, ..., \mathbf{z}_K^{(p)}$

► find the nearest hidden point of  $\tilde{z}$  from  $\mathbf{z}_1^{(t)}, \mathbf{z}_2^{(t)}, ..., \mathbf{z}_K^{(t)}$ 

# Active Learning with Cost Embedding



### Cost-sensitive Uncertainty

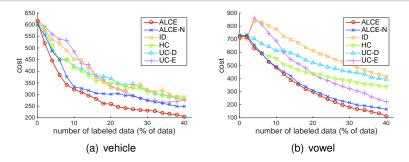
- ► nearest hidden point with large distance ⇒ uncertain prediction
- cost-sensitive uncertainty: distance between nearest hidden point and predicted hidden point ž

## Active learning with cost embedding (ALCE)

- For round t = 1, 2, ..., T
  - ▶ select  $\mathbf{x}_s \in \mathcal{D}_u$  with highest cost-sensitive uncertainty to query the label  $y_s$
  - update  $\mathcal{D}_l$  and  $\mathcal{D}_u$ , and learn a classifier  $f^{(t)}$  by cost embedding

# Comparison with Cost-Insensitive Algorithms

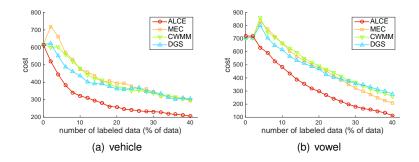
- ► ID, HC, UC-D, UC-E: their querying strategies + RBF kernel SVM
- ALCE-N (blue line): proposed querying strategy + RBF kernel SVM
- ALCE (red line): proposed querying strategy + cost embedding



- ► ALCE-N outperforms ID, HC, UC-D, UC-E ⇒ querying strategy is useful
- ► ALCE outperforms ALCE-N ⇒ cost embedding is useful

## Comparison with Cost-Sensitive Algorithms

MEC, CWMM, DGS: probabilistic uncertainty + RBF kernel SVM
ALCE (red line): non-probabilistic uncertainty + cost embedding



### ALCE outperforms MEC, CWMM, DGS

# Conclusion

### propose active learning with cost embedding (ALCE)

- embedding view for cost-sensitive multiclass classification
- embed cost information in distance by non-metric multidimensional scaling
- mirroring trick for asymmetric cost matrix
- define cost-sensitive uncertainty by distance
- promising performance of ALCE compared with state-of-the-art cost-sensitive active learning algorithms

## Thank you! Any question?